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We desire to quantify the complexity of the tools in the MPEG-2 Advanced Audio Coding (AAC) 

decoder. They are: 

• huffman decoding 

• inverse quantization and scaling 

• M/S dematrixing 

• intensity stereo 

• coupling channel 

• backward adaptive prediction 

• temporal noise shaping (TNS) 

• inverse modified discrete cosine transform (IMDCT) 

 

Unless otherwise indicated, complexity is specified in terms of  

• machine instructions required to realize the tool’s computations, as run on a typical (but unspecified) 

programmable digital signal processor 

• read/write storage locations 

• read-only storage locations 

 

We assume that: 

• the target machine uses only IEEE floating point arithmetic, so that all floating point data require 

four bytes of storage.  All storage is specified in terms of 32-bit words. 

• the coder block size is 1024 input samples, equivalent to 1024 spectral coefficients per channel. 

• an audio signal is sampled at 48 kHz, 16-bits per sample 

• the compressed bit rate is 64000 bits per second per audio channel  

Furthermore, we only indicate storage that is required by a tool and cannot be shared or re-used by 

other tools.  Specifically, we do not count temporary, stack-based scratch storage (“automatic” 

variables), as such storage is implicitly shared across tools. 

 

Unless explicitly indicated, all complexity figures are for one audio channel. 

Overview 
One should consider two important categories of AAC decoder implementations: software decoders 

running on general-purpose processors, and hardware decoders running on single-chip ASICs.  For 

these two categories the data presented in this document, augmented by demonstrated real-time 

software decoder implementations, can be summarized in the following table: 

 

Decoder Complexity 

2-channel Main profile software decoder 40 % of 133 MHz Pentium 

2-channel Low Complexity profile software decoder 25 % of 133 MHz Pentium 

5-channel Main profile hardware decoder 90 sq. mm die, 0.5 micron CMOS 

5-channel Low Complexity profile hardware decoder 60 sq. mm die, 0.5 micron CMOS 
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Specification of AAC Tool Complexity 

Input/Output Buffers 

Because of the encoder bit reservoir structure, a real-time decoder receiving a bitstream over a 

constant-rate channel must, to accomodate worst case buffering conditions, collect a number of input 

bits equal to the nominal rate per block plus the size of the encoder bit buffer before it can start 

decoding.  This constraint specifies the minimum input buffer size. On output, we assume that the 

IMDCT result is copied to a 16-bit PCM output buffer in a conventional double-buffered manner. 

 

Table 1 Input/Output Buffer Storage Requirements 

 

Bits Words

Input buffer 6144 192

Output buffer (two 16-bit values per word) 512

Totals 704  

Huffman Decode 

In order to decoding a Huffman codeword the decoder must traverse a Huffman code tree from “root 

node” to “terminal node” (or leaf).  The route taken depends on the Huffman codeword that is being 

decoded: if the next bit to be processed in the codeword is a “zero” then the “left” branch is taken 

relative to the current node; otherwise the “right” branch is taken.  The decoder must be at the root note 

when it begins processing a new Huffman codeword, and should be at a terminal node when the entire 

codeword has been processed.  The code fragment that does this processing is  

 
v = *p; 
while (v & Tnleaf) { 
 if (cword & 1) 
  p++; 
 else 
  p += v & (Tnleaf-1); 
 v = *p; 
 cword >>= 1; 
} 
 

where to start p points to the root node, cword contains the Huffman codeword to process (lsb first) and 

Tnleaf is a mask equal to 0x8000 that signals a terminal node.  Based on this code it requires 

approximately 10 instructions per bit for the Huffman decoding.  Table 2 shows the instruction 

complexity for both peak bits per block (3.5 times average) and average bits per block.  The summary 

statistics use the complexity for average bits per block because, in the case of a software-only decoder, 

there are software speed-ups that can be used to reduce that complexity to 2 instructions per bit (using 

additional tables) and in the case of an ASIC decoder, the huffman decoding is highly amenable to 

hardware acceleration. 

 

Pulse lossless coding follows the Huffman decode of the quantized spectral coefficients.  It has a very 

simple reconstruction algorithm as follows: 

 

k = start; 

for (i=0; i<=number_pulse; i++) { 

 k += pulse_offset[i]; 

 if (quant_coef[k] > 0) { 

  quant_coef[k] += pulse_amp[i]; 

 } 

 else { 

  quant_coef[k] += pulse_amp[i]; 

 } 

} 
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The bitstream syntax permits “number_pulse” to be no greater than 4 and the loop requires no more 

than 10 instructions per iteration, so the instruction complexity for pulse lossless coding is no more 

than 40 instructions per block, as indicated in Table 2.  Based on figures for peak compression (50 bits 

per block or 4%) and average compression (0.25 percent), a value of one tenth the peak complexity is 

used to approximate the average complexity. 

 

Table 2 Huffman Decoding Instruction Complexity 

 

Channel rate (bps) 64000 Instruct.

Sample rate 48000

Block length 1024

peak average

Bits per block 4778.7 1365.3

Instructions per bit 10 10

Pulse lossless coding 40 4

Totals 47827 13657  
 

The Huffman codewords can represent signed or unsigned values.   

Table 3 shows the storage complexity for the Huffman codebooks in which spectrum tables 1, 2, 5 and 

6 are signed.  

 

Huffman decoding requires the storage of the tree and the value corresponding to the codeword. 

Interior notes must store an offset to the child nodes.  The size of this offset does not have to be any 

larger than the total number of nodes in the table. In  

Table 3 the offset is 8 or 16 bits.  Furthermore, the offset to the left child can be implicit (it can always 

follow the parent) so only one offset must be stored.  At the terminal notes instead of storing an offset, 

the decoded value is stored, in compressed form if necessary. 

 

Table 3 Huffman Decoding Read-Only Storage 

 

Huffman Table Leaves Nodes Wds/Nd Words

Scale factor 121 242 0.25 61

Spectrum LAV Tuple

1 1 4 81 162 41

2 1 4 81 162 41

3 2 4 81 162 41

4 2 4 81 162 41

5 4 2 81 162 41

6 4 2 81 162 41

7 7 2 64 128 32

8 7 2 64 128 32

9 12 2 169 338 0.5 169

10 12 2 169 338 169

11 16 2 289 578 289

Totals 2724 995  
 

Inverse Quantization and Scaling 

Each coefficient must be inverse quantized by a 4/3 power nonlinearity and then scaled by the 

quantizer stepsize. Since the range of values represented by the decoded Huffman values is limited by 

the codebook itself (except for the escape codebook), the inverse quantization can be done by table 
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lookup.  The stepsize, or scale factor, is itself logarithmicaly encoded and is similarly limited in 

dynamic range, so that it can be decoded by a table lookup as well. We assume that only 854 spectral 

coefficients (20 kHz bandwidth) must be inverse quantized and scaled by a scale factor. This is 

summarized in Table 4. 

 

Table 4 Inverse Quantization and Scale Factor Complexity 

 

Block len 1024

Read-Only Storage Instructions

Inverse quantation 128 854

Stepsize scaling 128 854

Totals 256 1708  

M/S Synthesis 

This is a very simple tool that couples two channels into a stereo pair. For each sample in each channel 

of the stereo pair the samples may already be the left and right signals, in which case no computation is 

necessary, or the pair must be de-matrixed via one add and one subtract per pair of samples.  Since the 

computation is done in-place, there is no additional storage requirements.  It is assumed that only a 20 

kHz bandwidth needs the M/S computation. This is summarized in Table 5. 

 

Table 5 M/S Synthesis Complexity 

 

Block length 1024

Instructions per block per stereo pair 854

Storage per block 0  

Intensity Stereo 

 

In this tool a region of coefficients for a stereo pair is identical except for a “position” scaling of the 

coefficients of the second channel in the pair. Even though intensity stereo saves bits, the encoder will 

allocate those bits elsewhere (which is the point of intensity stereo compression) such that the huffman 

decoding comlexity is unchanged.  Similarly, even though the right channel of intensity stereo coded 

regions do not have scale factors, they do have intensity stereo position factors that require the same 

decoding complexity. Left-channel intensity stereo regions must have inverse quantization and scaling 

applied.  Right-channel intensity stereo regions use the left-channel inverse quantized and scaled 

coefficients, which must be re-scaled by the intensity position factors. Hence the net complexity of 

intensity stereo is a savings of one inverse quantization per intensity stereo coded coefficient.  Intensity 

stereo does not use any additional read-only or read-write storage.  This complexity estimate is 

summarized in Table 6. 
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Table 6 Intensity Stero Complexity 

 

Complexity: per blk:

per IS coefficient min max

Instruction complexity per stereo pair -1 0 -854

Read-only memory complexity 0 0 0

Read-write memory complexity 0 0 0

 

Coupling Channel 

The coupling channel is at its core a single channel element.  Since bits allocated for the coupling 

channel are removed from other channels, there is no increase in Huffman decoding complexity.  The 

coupling channel’s intrinsic scaling is approptiate for the first target channel of the set of coupled 

channels, while the other coupled channels scale factors must be transmitted and decoded.  The final 

stage in the coupling decoding is to add the coupled channel to the target channel in the frequency 

domain (dependently switched coupling channel) or in the time domain (independently switched 

coupling channel). 

 

Table 7 shows two cases for typical coupling channel compexity: one dependent coupling channel with 

three target channels (1 dcc, 3 tc) such as would be used in the Low Complexity profile, and one 

independent coupling channel and three target channels (1 icc, 3 tc) such as could be used in the Main 

profile. 

 

Table 7 Coupling Channel Complexity 

 

Max coupling bandwidth 20000

Max coupling coef. 854

Max number of coupling channels (cc) 2

Max number of coupled channels (tc) 5

1-dcc, 3-tc 1-icc, 3-tc

Instructions

huffman decode 0 0

inv. quant. and scale for first tc 1708 1708

scale for subsequent tc 1708 2

prediction 0 44352

TNS 8130 13630

IMDT 0 19968

coupling mix 2562 3072

Total 11546 79660

Read-write storage, words 854 1536

Read-only storage, words 0 0  
 

Prediction 

The backward-adaptive predictors must run at every block in the decoding process for every coefficient 

that will ever use prediction.  In this analysis we that only the first 672 coefficients will use prediction 

and that all prediction and coefficient adaptation calculations are done in IEEE floating point arithmetic 

(although the calculations can be done on a fixed point platform as well).  To reduce memory 

requirements, variables are truncated to 16 bits prior to storage. 

 

Table 8 shows the instruction complexity of the prediction tool, with instruction counts specified for 

each step in the prediction computation.  Table 9 shows the read-write storage required by the 

prediction tool. 
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Table 8 Prediction Instruction Complexity 

 

Number of coef. using prediction: 672

Bandwidth 15750

Predictor Order 2

Calculation Instructions per predictor Instructions per block

retrieval and inv. quant. 12

error summation 4

LMS prediction coef adaption 18

reflection summation 2

new prediction coefs (2 div) 8

quant. for error control 6

prediction 2

misc 2

quant. and storage 12

Totals 66 44352  

 

Table 9 Prediction Read-Write Storage Complexity 

 

Number of coef. using prediction 672

Predictor Order 2

Function Words per Predictor Words per Channel

state variables (delay elements) 1

correlation coefs 1

variance estimates 1

Totals 3 2016  
 

TNS 

Temporal noise shaping (TNS) has a variable load, depending on the order of its filters and the number 

of spectral coefficients that are filtered. Table 10 shows the “worst-case” complexity permitted by 

TNS.  Table 11 shows that TNS requires negligible storage. 

 

Table 10 TNS Instruction Complexity 

 

Maximum filter order 12 20

Maximum coefs to filter 672 672

Instructions

Filter coef inv quant 66 190

Filtering 8064 13440

Totals 8130 13630  
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Table 11 TNS Storage Requirements 

 

Words

Read-write storage 0

Read-only storage

Filter coef inv quant tables 24  

IMDCT 

It is assumed that the IMDCT calculation is done in floating point, although fixed point realizations are 

feasible.  The only requirement is that any roundoff noise due to computational error (such as finite word 

length errors) be less than 1/2 lsb after the transform result is rounded to 16-bit PCM.  Fixed point 

realizations using 24 bit words are certainly adequate, and word lengths as low as 20 or 21 bits may be 

sufficient.  One compromise to this requirement is made in this analysis, which is that the windows used 

in the overlap-add portion of the transform are stored as 16-bit.  This is reasonable since the window and 

overlap-add is the final computation prior to rounding to 16-bit PCM and therefore computational errors 

do not accumulate. 

 

Table 12 shows the IMDCT complexity in multiply/add operations per block (1024 samples). Table 13 

and Table 14 show the IMDCT complexity in terms of words of read/write and read-only storage.  Note 

that the coefficient storage listed in Table 13 is actually the decoder’s “working storage” and is used by 

all the tools in the decoder. 

 

Table 12 IMDCT Arithmetic Complexity 

 

M = 1024 Instructions 

first modulation 2*M 2048

complex FFT of size M2 = M/2 512

number of bfy (M2/2) 256

operations per bfy 6 6

number of stages log2(M2) 9

total = 6*log2(M2)(M2/2) 13824 13824

second modulation 2*M 2048

window and ovlp add 2*M 2048

Total 19968  
 

Table 13 IMDCT Read/Write Storage Requirements 

 

Block len 1024 Words

coefficient storage 1024

state variable storage 512

Totals 1536  
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Table 14 IMDCT Read-Only Storage Requirements 

 

Block length 128 1024

Words Words Words

First modulation sin/cos table 64 512

FFT twiddle table 12 18

Second modulation sin/cos table 512

Windows are 16-bit values

Sin window table 64

Alternate window table 64

Dolby window table 512

Alternate window table 512

Total 204 2066 2270  
 

Summary of Tool Complexity 
The following tables summarize the complexity of each tool based on number of instructions, amount 

of read-write storage and amount of read-only storage for both Main profile and Low Complexity 

profile.  Storage for the program itself has not been counted.  The tables first list complexity on a per-

channel basis and then factor this up to get the complexity for a 5-channel coder.  Resources scale 

linearly with some exceptions: M/S joint stereo, intensity stereo and stereo prediction are stereo pair 

operations and there are only two stereo pairs in a 5-channel system; and obviously read-only memory 

is a shared resource so that its complexity is the same for 1- and 5-channel coders. 

 

The most revealing data in the tables is the last column, which lists the complexity of a tool’s 

requirements (instructions, read-write storage or read-only storage) as a percentage of the total amount 

of that resource used in the entire 5-channel coder.   

Main Profile 

Tables 15 through 18 summarize the complexity of AAC Main profile. 

 

Table 15 Summary of Instruction Complexity 

 

1-Chan 5-Chan

Instr. Instr. percent

Huffman, pulse decode 13657 68285 13.3

Inv. quant. and scale 1708 8540 1.7

M/S synthesis 1708 0.3

Prediction 44352 221760 43.2

Coupling channel (1 icc) 79661 15.5

TNS (average) 6815 34075 6.6

IMDCT 19968 99840 19.4

Totals 86500 513869 100.0  
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Table 16 Summary of Read-Write Storage 

 

1-Chan 5-Chan

Words Words percent

Input buffer 192 960 4.5

Output 512 2560 12.0

Working buffer 1024 5120 24.1

Prediction state vars. 2016 10080 47.4

Coupling (1 dcc, 1 icc) 2390 11.2

IMDCT state vars 512 2560 12.0

Totals 4256 21280 100.0  

 

Table 17 Summary of Read-Only Storage 

 

1-Chan 5-Chan

Words Words percent

Huffman decode 995 28.1

Inv. quant. and scale 256 7.2

Prediction 0 0.0

TNS 24 0.7

IMDCT 2270 64.0

Totals 3545 100.0  
 

Table 18 lists the estimated area which each tool’s resources would consume if the AAC decoder were 

fabricated as a single-chip device using a 0.5 micron CMOS.  The ALU used in this analysis is a MIPS 

R3000 RISC core with 1K instruction cache, 4K data cache and a fast 32 by 32 (64-bit result) integer 

multiplier.  Each read-write memory cell (bit) is assumed to take six transistors while each read-only 

memory cell is assumed to take one transistor, so that the area of read-only cells are one sixth the area 

of read-write cells.  Judging from a photo of the R3000 die, the 20 Kbytes of cache memory is 1/3 of 

the total die area.  Therefore, the size of 1 K byte of read-write memory was assumed to be 1/60 of the 

total die area. 

Table 18 Estimated Chip Area Required for Each Tool 

 

(mm)^2 % of die

Area per 1 Kbyte read-write memory 0.67

ALU core (less cache memories) 26.67 29.68

Read-Only Memory Words

Huffman tables 995 0.43 0.48

Inv quant and scaling tables 256 0.11 0.12

TNS tables 24 0.01 0.01

IMDCT tables 2270 0.99 1.10

Read-Write Memory

Input buffer 960 2.50 2.78

Output buffer 2560 6.67 7.42

Working buffer 5120 13.33 14.84

Prediction state variables 10080 26.25 29.22

Coupling channel (1 dcc, 1 icc) 2390 6.22 6.93

IMDCT state variables 2560 6.67 7.42

Totals 89.85 100.00  
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Low Complexity Profile 

Tables 19 through 21 summarize the complexity of the AAC Low Complexity profile.  The Low 

Complexity profile has the following features relative to the Main profile: 

• no prediction 

• TNS limited to 12 coefficients, but still over an 18 kHz bandwidth 

 

Table 19 Summary of Instruction Complexity, Low Complexity Profile 

 

1-Chan 5-Chan

Instr. Instr. percent

Huffman, pulse decode 13657 68285 32.5

Inv. quant. and scale 1708 8540 4.1

M/S synthesis 1708 0.8

Coupling channel (1 dcc) 11546 5.5

TNS (average) 4065 20325 9.7

IMDCT 19968 99840 47.5

Totals 39398 210244 100.0  
 

Table 20 Summary of Read-Write Storage, Low Complexity Profile 

 

1-Chan 5-Chan

Words Words percent

Input buffer 192 960 8.6

Output 512 2560 22.9

Working buffer 1024 5120 45.7

Coupling channel (1 dcc) 854 7.6

IMDCT state vars 512 2560 22.9

Totals 2240 11200 100.0  
 

Table 21 Estimated Chip Area Required for Each Tool, Low Complexity Profile 

 

(mm)^2 % of die

Area per 1 Kbyte read-write memory 0.67

ALU core (less cache memories) 26.67 44.75

Read-Only Memory Words

Huffman tables 995 0.43 0.72

Inv quant and scaling tables 256 0.11 0.19

TNS tables 24 0.01 0.02

IMDCT tables 2270 0.99 1.65

Read-Write Memory

Input buffer 960 2.50 4.19

Output buffer 2560 6.67 11.19

Working buffer 5120 13.33 22.37

Coupling channel (1 dcc) 854 2.22 3.73

IMDCT state variables 2560 6.67 11.19

Totals 59.60 100.00  
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