
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2005/N7686
October 2005, Nice, France

Source: Audio Subgroup
Title: Verification Report on MPEG-4 ALS
Status: Approved

1 Introduction

MPEG-4 Audio Lossless Coding (ALS) is a new extension of the MPEG-4 audio coding
family. Unlike perceptual MPEG audio coding standards such as MP3 and AAC, the
ALS scheme provides lossless compression of digital audio data, i.e. it enables bit-
identical reconstruction of the original data.
The ALS core codec is based on forward-adaptive linear prediction, which offers
remarkable compression together with low complexity. Alternatively, also a backward-
adaptive predictor can be used. ALS supports audio input with resolutions of up to 32 bit,
at arbitrary sampling rates. Additional features include multi-channel coding and
compression of floating-point audio material.
ALS also offers much flexibility in terms of compression-complexity tradeoff, ranging
from very low-complexity implementations to maximum compression modes, thus
adapting to different requirements.
The following sections constitute an overview of the ALS architecture, performance
criteria, test methodologies, with the most important performance results in terms of
compression and complexity in sections 2 and 3, and additional codec features and test
results in sections 4 and 5.

2 ALS Architecture

The basic ALS algorithm [Lie05] essentially uses forward-adaptive linear predictive
coding (LPC). The prediction residual is transmitted along with quantized filter
coefficients. The decoder applies the inverse prediction filter in order to achieve lossless
reconstruction (see Figures 1 and 2).

Figure 1 – ALS encoder

Figure 2 – ALS decoder

The complexity of the decoder mainly depends on the multiplications performed by the
inverse prediction filter. The number of multiplications equals the prediction order, i.e.
the number of filter taps. The order of the prediction filter can be adapted, thus the
average complexity depends on the average prediction order chosen by the encoder.
Additional tools, which can be switched on to improve compression, comprise long-term
prediction (LTP) and multi-channel prediction (MCC). Alternatively, a backward-
adaptive predictor (RLS-LMS) can be used instead of the forward-adaptive predictor
[N7364]. The RLS-LMS predictor can improve compression at the expense of a
significantly increased decoder complexity.

Original
Buffer

Parcor
Values

Predictor

Quantized
Parcor Values

Entropy
Coding

Code Indices

M
ul

tip
le

xi
ng

Residual

Bitstream

Estimate

Entropy
Coding

Parcor
to LPC

Q

Prediction
D

em
ul

tip
le

xi
ng

Bitstream

Entropy
Decoder

Predictor

Lossless Reconstruction

Parcor
Values

Code Indices

Estimate

Residual

Parcor
to LPC

Entropy
Decoder

Inverse Prediction

3 Performance of ALS
3.1 Criteria and Test Methodologies

Test Data: The performance is evaluated using the MPEG-4 lossless audio coding test
sets, donated by Matsushita Corporation [N5208]. There are four test sets with the
following formats:

• 48 kHz sampling rate / 16-bit resolution (15 items)
• 48 kHz sampling rate / 24-bit resolution (15 items)
• 96 kHz sampling rate / 24-bit resolution (15 items)
• 192 kHz sampling rate / 24-bit resolution (6 items)

All test sets contain the same items in different formats (the 192/24 set only contains a
subset), where all items have a length of 30 seconds (see Appendix B).

Coding Efficiency: All coding results are given in terms of compression ratio

and compression size

,

where the latter is equivalent to the remaining percentage of data.

Complexity: In the following, the computational complexity is represented by a weighted
average number of standard instructions (with weights: 14.0 – multiplications, 56.0 –
divisions, 4.0 – shifts, and 0.5 – for additions, comparisons, and memory-access
operations), corresponding to the estimated latencies of instructions in Intel Pentium
processors [IA32]. An estimation of ROM usage is given as well.
For the purpose of comparison, also the total number of instructions of all kinds
(complexity metric relevant for RISC and other architectures with single-cycle
instructions) can be used. Please refer to Appendix A for a more detailed analysis of the
theoretical ALS decoder complexity. In addition to that, some test results from a
performance evaluation on a PC platform can also be found in section 5.

3.2 Coding Efficiency

In the following, three representative combinations of coding parameters (“coding
modes”) of MPEG-4 ALS are compared:

 SizeCompressed
izeOriginal Sn RatioCompressio =

%100
izeOriginal S
 SizeCompressedn SizeCompressio ×=

• Standard predictor (forward-adaptive) with maximum prediction order limited to

K £ 20, BGMC entropy coding, LTP and MCC enabled
• Standard predictor at maximum compression (K £ 1023), BGMC, LTP and MCC

enabled
• RLS-LMS predictor (backward-adaptive) at maximum compression (RLS

order: 16, LMS orders: 512, 128, 16)

In each case, random access of 500 ms is provided. Table 1 summarizes the most
important compression results, divided into separate results for the four audio formats
and the whole test set, both in terms of compression ratio and compression size.

Format
Standard (K <= 20) Standard (max) RLS-LMS (max)
Ratio Size Ratio Size Ratio Size

48 kHz / 16-bit 2.204 45.37 % 2.242 44.61 % 2.257 44.31 %
48 kHz / 24-bit 1.583 63.18 % 1.596 62.66 % 1.603 62.39 %
96 kHz / 24-bit 2.157 46.35 % 2.169 46.09 % 2.181 45.85 %
192 kHz / 24-bit 2.656 37.65 % 2.669 37.46 % 2.668 37.48 %

Average 2.150 48.14 % 2.169 47.71 % 2.177 47.50 %

Table 1 – Compression ratio and size for different formats and compression modes

Figure 3 – Compression ratio for different formats and compression modes

The compression ratios for each format and mode are also illustrated in Figure 3. It can
be seen that the compression ratio increases for higher sampling rates (i.e. from 48 kHz to
192 kHz), but decreases for higher resolutions (i.e. from 16-bit to 24-bit).

1.0

1.5

2.0

2.5

3.0

48 / 16 48 / 24 96 / 24 192 / 24 Average

C
om

pr
es

si
on

 R
at

io

Standard (K<=20)

Standard (max)

RLS-LMS (max)

3.3 Compression vs. Complexity

Figures 4-7 show the relation between coding efficiency and estimated decoder
complexity for an Intel Pentium platform (see Appendix A for a detailed discussion). The
vertical axis shows the compression rates, achieved on the test set, while the horizontal
axis shows the average complexity of the decoder in terms of Pentium cycles per
processed sample. The complexity of the forward-adaptive predictor is given on the left-
hand side, while the complexity of the RLS-LMS predictor is separately given on the
right-hand side (please note the different scales).

Figure 4 – Relation between compression and complexity (48 kHz / 16 bit)

Figure 5 – Relation between compression and complexity (48 kHz / 24 bit)

44.0

44.5

45.0

45.5

46.0

46.5

0 1000 2000 3000 4000 5000

Complexity

C
om

pr
es

si
on

 S
iz

e
[%

]

44.0

44.5

45.0

45.5

46.0

46.5

10000 40000 70000

Complexity

62.0

62.5

63.0

63.5

64.0

0 1000 2000 3000 4000 5000

Complexity

C
om

pr
es

si
on

 S
iz

e
[%

]

62.0

62.5

63.0

63.5

64.0

10000 40000 70000

Complexity

Figure 6 – Relation between compression and complexity (96 kHz / 24 bit)

Figure 7 – Relation between compression and complexity (192 kHz / 24 bit)

More information on the estimated complexity of the ALS decoder for several modes of
operation are provides in Appendix A, including a list of all individual instructions (i.e.
multiplications, additions, etc.), as well as the total number of instructions.

45.5

46.0

46.5

47.0

47.5

48.0

0 500 1000 1500 2000 2500 3000

Complexity

C
om

pr
es

si
on

 S
iz

e
[%

]

45.5

46.0

46.5

47.0

47.5

48.0

10000 40000 70000

Complexity

37.0

37.5

38.0

38.5

39.0

0 500 1000 1500 2000

Complexity

C
om

pr
es

si
on

 S
iz

e
[%

]

37.0

37.5

38.0

38.5

39.0

10000 40000 70000

Complexity

3.4 ROM Usage Requirements

The ROM requirements of an ALS decoder depend on the employed entropy coding
scheme (either Rice coding or BGMC). In Table 2, the memory requirements of both
schemes are summarized.

 ALS / Rice ALS / BGMC

ROM usage 0.7 kBytes 7 kBytes

Table 2 – ROM usage requirements for ALS decoders

4 Functionalities

MPEG-4 ALS offers a number of interesting functionalities. Table 3 summarizes some of
its most prominent features.

Feature Realization
Numerical lossless
coding

Yes

Support for multi-
channel audio

Yes, up to 65536 channels

Support for 32-bit PCM
formats

Yes, any resolution up to 32-bit, including 8-bit,
16-bit, 24-bit, and intermediate resolutions such
as 12-bit

Support for 32-bit
floating-point formats

Yes, IEEE 32-bit

Random Access Minimum length of random access units tmin
depends on frame length N and sampling rate fs:
tmin = N / fs.
Example: 48 kHz, N = 2048: 42 ms

Table 3 – Features of MPEG-4 ALS

5 Additional Information and Results
5.1 Compression of Floating-Point Audio Data

In addition to integer audio signals, MPEG-4 ALS also supports lossless compression of
audio signals in the IEEE 32-bit floating-point format [IEEE754]. The floating-point
sequence is modeled by the sum of an integer sequence and a residual sequence. The
integer sequence is compressed using the basic ALS tools for integer data, while the
residual sequence is compressed separately.
Since currently there are only few tools available for lossless compression of floating-
point audio, MPEG-4 ALS is compared with WinZip, which is one of the most popular
programs for dictionary based lossless compression.

Figure 8 shows the compression ratios for a set of 96 kHz test data, consisting of several
original recordings, which were supplied by a professional sound studio. The results
show that ALS compresses floating-point audio data much more effectively than a
general-purpose compression tool such as WinZip. Similar results can be obtained for
other sampling rates.

Figure 8 – Compression ratios for 32-bit floating-point audio data (96 kHz)

5.2 Compression Results for Multi-Channel Data

MPEG-4 ALS can efficiently compress multi-channel signals, including 5.1 surround
sound and wave field synthesis signals, but it is also suited for non-audio multi-channel
signals such as bio-medical (e.g. EEG, MEG) and seismic data.
Figure 9 shows the compression ratios for some typical 5.1 multi-channel audio signals
(48 kHz), taken from an MPEG test set for multi-channel testing. Figure 10 shows some
results for different 512-channel MEG signals, which were kindly provided by Prof.
Tsunehiro Takeda, The University of Tokyo.
The compression ratios for 5.1 material are typically higher than for stereo material, since
there is often only low activity in some channels.

0

0.5

1

1.5

2

2.5

3

#1 #2 #3 #4 #5 #6 Total

Track #

C
om

pr
es

si
on

 ra
tio

ZIP

ALS

Figure 9 – Compression ratios for 5.1 multi-channel audio data (48 kHz)

Figure 10 – Compression ratios for multi-channel MEG data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ap
pls

e_
REF.w

av

fou
nta

in_
musi

c_R
EF.w

av

ha
rps

i_R
EF.w

av

man
sin

i_R
EF.wav

sq
am

co
m_R

EF.w
av

Stomp_
REF.wav

Ave
rag

e

C
om

pr
es

si
on

 ra
tio

2.5

2.6

2.7

2.8

2.9

3

h-s
efR

AW51
2.w

av

o-a
1a

5o
RAW51

2.w
av

o-a
1a

5p
RAW51

2.w
av

o-a
2R

AW
51

2.w
av

o-a
4R

AW
51

2.w
av

Ave
rag

e

C
om

pr
es

si
on

 ra
tio

5.3 Complexity Analysis on a PC platform

In the following, some experimental performance results for MPEG-4 ALS on a PC
platform are presented. Besides the reference software decoder (RM16), also the
performance of a faster implementation, supplied by NTT, is shown. For means of
comparison, results for Monkey's Audio v3.99 [MAC] at three modes (c2000, c4000,
c5000) are given as well.
Since one of the most typical use case scenarios for ALS is archival application on a PC
platform, the test was processed on a system with Windows Server 2003, AMD Opteron
Processor 250, 2.39 GHz, and 2.0 GB RAM.
Figure 11 shows the relation between compression efficiency and average decoding time
over all items (each of which is 30 seconds), similar to Figures 4-7, but averaged over the
four test sets (same as last row of Table 1).

Figure 11 – Relation between compression size and decoding time (average over all test sets)

Although the ALS reference decoder runs significantly faster than real-time, the results
show that an even the faster implementation is easily possible. The complexity at the
lower end can be further reduced by using Rice coding instead of BGMC.
As a conclusion, ALS performs better than Monkey’s Audio, both on average as well as
for the four individual test sets (not shown).

47.0%

47.5%

48.0%

48.5%

49.0%

49.5%

50.0%

0 1 2 3 4 5 6 7

Decoding Time [sec]

C
om

pr
es

si
on

 S
iz

e
[%

]

ALS RM16
ALS fast
Monkey's Audio

47.0%

47.5%

48.0%

48.5%

49.0%

49.5%

50.0%

40 80 120 160

Decoding Time [sec]

ALS RLS-LMS

6 Summary

MPEG-4 Audio Lossless Coding (ALS) is a highly efficient and fast lossless audio
compression scheme for both professional and consumer applications, which offers many
innovative features.
Maximum compression can be achieved by means of high prediction orders or the RLS-
LMS mode. Using low and medium complexity modes, real-time encoding and decoding
are possible even on low-end devices.

7 References

[N5208] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N5208, “Final Call for

Proposals on MPEG-4 Lossless Audio Coding”, Shanghai, China, October
2002.

[N7364] ISO/IEC JTC1/SC29/WG11 (MPEG), Document N7364, “Text of 14496-
3:2001/FDAM 4, Audio Lossless Coding (ALS), new audio profiles and BSAC
extensions”, Poznan, Poland, July 2005.

[Lie05] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, Y. Reznik, “The MPEG-4
Audio Lossless Coding (ALS) Standard – Technology and Applications”, 119th
AES Convention, New York, USA, October 2005.

[IA32] IA-32 Intel Architecture Optimization Reference Manual, ON: 248966-009,
Intel Corp.

[MAC] Monkey's Audio: http://www.monkeysaudio.com/

Appendix A: Analysis of ALS Decoder Complexity

The main blocks contributing to the ALS decoder’s complexity are LPC synthesis filter,
and either Golomb-Rice or BGMC residual coding engines. Below we analyze the
numbers of 32-bit arithmetic operations involved in each process.

The computational complexity is evaluated by counting the total numbers of standard
instructions (multiplications, additions, bit-shifts, comparisons, memory transfers, etc)
required for performing the decoding process on a generic 32-bit fixed-point CPU.

For the purpose of comparison we are also computing the total number of instructions of
all kinds (complexity metric relevant for RISC- and other architectures with single-cycle
instructions) and a weighted average number (with weights: 14.0 – multiplications, 56.0 –
divisions, 4.0 – shifts, and 0.5 – for additions, comparisons, and memory-access
operations) corresponding to the estimated latencies of instructions in Intel Pentium
processors [IA32].

The complexity of deterministic algorithms is evaluated exactly, while the complexity of
arithmetic coding engines is estimated as the upper bound for the average complexity,
assuming that both systems achieve compression ratio of 2:1.

In addition, we also provide estimates of ROM usage requirements of the algorithm, and
compare the description complexity expressed in the number of lines of plain C-code
(excluding lines containing comments and single start/end-of-block operators) required to
describe the main functions.

A.1 Complexity of LPC Synthesis Filter

The computational complexity of LPC synthesis filter can be expressed by the following
formula:

N * K * (2 adds + 1 mul) + N * (1 add + 2 shifts)

where N is the frame size, and K is the predictor order (either maximum or average,
depending on complexity approach).

The actual numbers of instructions, calculated using this formula for various predictors
orders are listed in the following table.

K

Muls Adds/Subs Shifts Combined
All = 1 cycle

Combined
Pentium K 2K+1 2

10 10 21 2 33 158.5
15 15 31 2 48 233.5
20 20 41 2 63 308.5

30 30 61 2 93 458.5
40 40 81 2 123 608.5
50 50 101 2 153 758.5
60 60 121 2 183 908.5
80 80 161 2 243 1208.5
100 100 201 2 301 1508.5
120 120 241 2 361 1808.5
255 255 511 2 767 3833.5

Table 4 – Numbers of INT32 operations (per sample / channel) in ALS synthesis filter

A.2 Complexity of RLS-LMS Filter

The detailed analysis of this filter has been performed. The formula for total
computational complexity of RLS-LMS filter, reported in [N7371], is:

M_rls^2 * (0.5 div64x32 + 2.5 muls + 9.5 adds + 3 shifts + 2.5 cmps + 1 or + 1 neg + 1 mov).
+ M_rls * (0.5 div64x32 + 5.5 muls + 16.5 adds + 12 shifts + 4.5 cmps + 5 ors + 5 negs + 4 movs).
+ M_lms * (3 muls + 6 adds + 2 shifts + 1 mov).
+ nstages * (1 muls + 3 adds + 2 shifts + 2 cmps).
+ 2 div64x32 + 37 adds + 51 shifts - 6 cmps.
+ (M_lms * (1 muls + 2 adds) + lms_stages * 2 cmps) / N;

where:

N – is the length of a frame;
M_rls – the length of an RLS filter;
M_lms – the combined length of all LMS filters in RLS-LMS cascade;
nstages – the total number of stages in RLS-LMS cascade;
lms_stages – the number of LMS stages in RLS-LMS cascade

(in current implementation: lms_stages = nstages - 2).

The complexity analysis of the three RLS-LMS modes is given in Table 9.

Mode RLS-LMS filter complexity
stages M_rls M_lms Divs Muls Adds Shifts Cmps Movs Total Pentium

-z1 5 8 164 38 701 1776 677 200 260 3652 16985
-z2 5 12 328 80 1415 3586 1293 418 520 7312 34286
-z3 5 16 656 138 2701 6685 2333 716 976 13548 63482

Table 5 – Computational complexity of RLS-LMS filter

A.3 Complexity of the Golomb-Rice decoder

Given a number x, the Golomb-Rice code of x with parameter s, consists of x / 2^s 1s,
followed by a zero bit, and an s-bit remainder x % 2^s.

It is clear, that the decoding of such a code would require:

(x / 2^s + 1 + s) bit-reads + (x / 2^s + 1) additions + 1 shift.

In a reference ALS encoder the Rice code parameter s is chosen using a formula:

so the average number of operations required to decode a residual sample can be upper
bounded by:

(2 + 1 + s) bit_reads + (2 + 1) additions + 1 shift.

The number of bit_reads in this formula must also be equal to the average bitrate of the
encoded block of residual samples, so the more accurate upper bound is:

R bit_reads + 3 additions + 1 shift.

where R is the average bitrate for a block.

A.4 Total ALS Decoder Complexity using the Golomb-Rice Coder

The total maximal complexity of ALS/Rice decoder is:

N * K * (1 mul + 2 adds) + N * (1 add + 2 shifts)
+ N * (3 additions + 1 shift) + R bit_reads
+ N / 2 additions.

The corresponding numbers calculated for various predictor orders are shown below:

K

Muls Adds/Subs Shifts Combined
All = 1 cycle

Combined
Pentium K 2K+4.5 3

10 10 21 3 37.5 164.25
15 15 31 3 52.5 239.25
20 20 41 3 67.5 314.25
30 30 61 3 97.5 464.25
40 40 81 3 127.5 614.25
50 50 101 3 157.5 764.25
60 60 121 3 187.5 914.25
80 80 161 3 247.5 1214.25
100 100 201 3 307.5 1514.25
120 120 241 3 367.5 1814.25
255 255 511 3 772.5 3839.25

Table 6 – Complexity of ALS decoder using Golomb-Rice codes for residual

()2 2
1

1s = log .471 log
n

n

i
i
x x

=

ê úæ ö + £ê úç ÷
è øë û
å

A.5 Complexity of the BGMC Decoder

In BGMC mode, the code for prediction residual consists of arithmetically-coded most-
significant bits (MSB) of the residual, followed by the directly transmitted LSBs or Rice-
Coded values outside of the central region [Lie05]. Since the large values outside of the
central region happen with combined probability of 2^(-14), their effect on the overall
complexity is negligible.

The number of directly transmitted LSB bits (parameter k) in BGMC encoder is
calculated as follows:

b = (log n – 3)/2;
k = max(0, s – b);

where n is the sub-block size, and s is the Golomb-Rice code parameter calculated as
mentioned above. An additional parameter (delta), defining the step size in the
probability table is obtained using

delta = 5 – s + k.

Effective cardinality of the alphabet given parameters k, and delta:

7-delta <= Log |A| < = 8 – delta

The following table lists the attainable ranges of values of these parameters for typical
block sizes:

N n b min_delta Max_delta Min log |A| Max log |A|
512 128 2 3 5 2 5

1024 256 2 3 5 2 5

2048 512 3 2 5 2 6

4096 1024 3 2 5 2 6

Table 7 – Ranges of parameters delta and log|A| in BGMC decoder

The pseudo code of the multi-symbol arithmetic decoding process used in BGMC mode
is provided below:

 /* calculate range */
 range = high – low + 1; // 2 adds
 cum = (((value - low + 1) << F_BITS) –1) / range; // 3 adds + 1 shift
 // 1 div
 /* decode symbol */
 while (s_freq[s] > cum)

// using binary search the complexity is <= Log|A|
 s += 1; // in number of comparisons; |A| - alphabet size
 // division can be avoided by using <= Log |A|
 // multiplications in such a search process

 /* interval update: */
 high = low + (range*s_freq[s-1] >>F_BITS) -1; // 1 mul + 2 adds+ 1 shift
 low = low + (range*s_freq[s] >>F_BITS); // 1 mul + 1 add + 1 shift

 /* renormalize interval: */
 for (; ;) { // times the number of read bits:
 if (high < HALF) {
 /* nothing */
 } else
 if (low >= HALF) {
 value -= HALF; // 3 adds
 low -= HALF;
 high -= HALF;
 } else
 if (low >= FIRST_QTR && high < THIRD_QTR) {
 value -= FIRST_QTR; // 3 adds
 low -= FIRST_QTR;
 high -= FIRST_QTR;
 } else
 break;

 /* scale up code range and load next bit */
 low = low<<1; // 3 shifts + 1 add
 high = high<<1;
 value = value<<1 + get_bit (); // 1 bit read
 }
}

Based on this pseudo-code we can upper bound the total complexity of arithmetic
decoder by:

N * (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps
+ R * (4 adds + 3 shifts + 1 bit-read))

where N is the sub-block size, |A| is the cardinality of the alphabet, and R is the effective
rate of the arithmetically encoded data in BGMC bitstream.

Assuming that the effective rate of the arithmetic coder is the ½ of the effective alphabet
size log |A| then the complexity becomes:

N* (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps
+ log |A| /2 * (4 adds + 3 shifts + 1 bit-red))

The actual numbers calculated using this formula for different block sizes are given in the
following table:

N Muls Divs

Adds/
Subs Shifts Cmps

Combined
All = 1 cycle

Combined
Pentium

512 2 1 18 10.5 5 36.5 137.5
1024 2 1 18 10.5 5 36.5 137.5
2048 2 1 20 12 6 39 144
4096 2 1 20 12 6 39 144

Table 8 – Maximal complexity of the arithmetic decoder in BGMC mode

It shall be stressed that divisions in the above scheme are not essential, and can be easily
replaced by multiplications in the search loop. With such a substitution, the number of
required multiplications will be equal to the number of comparisons in the above table.

A.6 Total ALS Decoder Complexity using the BGMC Coder

The total complexity of ALS/BGMC decoder, assuming that the compression ratio is 2:1,
can be upper bounded as follows:

N * (K*(2 adds + 1 mul) + 1 add + 2 shifts)
+ N* (2 muls + 1 div + 8 adds + 3 shifts + log |A| cmps
+ log |A| /2 * (4 adds + 3 shifts + 1 bit-red))

The corresponding numbers for various block sizes are shown in the following table.

N

K

Muls Div
Adds/
Subs Shifts Cmps

Combined
All = 1 cycle

Combined
Pentium

K+2 1 2K+19 12.5 5

1024

10 12 1 39 12.5 5 69.5 296.0
15 17 1 49 12.5 5 84.5 371.0
20 22 1 59 12.5 5 99.5 446.0
30 32 1 79 12.5 5 129.5 596.0
40 42 1 99 12.5 5 159.5 746.0
50 52 1 119 12.5 5 189.5 896.0
60 62 1 139 12.5 5 219.5 1046.0
80 82 1 179 12.5 5 279.5 1346.0
100 102 1 219 12.5 5 339.5 1646.0
120 122 1 259 12.5 5 399.5 1946.0
255 257 1 529 12.5 5 804.5 3971.0

N

K

Muls Div
Adds/
Subs Shifts Cmps

Combined
All = 1 cycle

Combined
Pentium
 K+2 1 2P+21 14 6

2048,
4096

10 12 1 41 14 6 74 303.5
15 17 1 51 14 6 89 378.5
20 22 1 61 14 6 104 453.5
30 32 1 81 14 6 134 603.5
40 42 1 101 14 6 164 753.5
50 52 1 121 14 6 194 903.5
60 62 1 141 14 6 224 1053.5
80 82 1 181 14 6 284 1353.5
100 102 1 221 14 6 344 1653.5
120 122 1 261 14 6 404 1953.5
255 257 1 531 14 6 809 3978.5

Table 9 – Estimated maximum numbers of INT32 operations in ALS LPC synthesis filter and BGMC
entropy decoder

As the prediction order can be adaptively chosen on a frame-by-frame basis, the
complexity of the decoder is largely determined by the average prediction order chosen
by the encoder. Assumed that the encoder specifies a maximum prediction order Kmax
that can not be exceeded, the actual average prediction order Kavg is typically lower. The
following Tables 10-13 present measured values of average prediction orders for given
maximum orders, and how they relate to the decoder complexity in terms of Pentium
cycles per processed sample, according the upper part of Table 9. The right column
additionally shows the corresponding compression sizes, thus the last two columns
contain exactly the data that was used to generate Figures 4-7.

Kmax Kavg Pentium (Kavg) Size [%]
10 10 296 45.521
15 14 356 45.407
20 18 416 45.365
30 23 491 45.328
40 29 581 45.294
60 41 761 45.210
90 60 1046 45.057
127 84 1406 44.939
191 119 1931 44.832
255 156 2486 44.763
383 218 3416 44.677
511 256 3986 44.640
1023 309 4781 44.609

Table 10 – Average prediction orders and complexities (48 kHz / 16-bit)

Kmax Kavg Pentium (Kavg) Size [%]

10 10 296 63.308
15 14 356 63.214
20 18 416 63.178
30 25 521 63.149
40 31 611 63.124
60 43 791 63.066
90 62 1076 62.961
127 86 1436 62.881
191 121 1961 62.809
255 158 2516 62.762
383 220 3446 62.704
511 255 3971 62.678
1023 312 4826 62.657

Table 11 – Average prediction orders and complexities (48 kHz / 24-bit)

Kmax Kavg Pentium (Kavg) Size [%]

10 10 296 47.826
15 15 371 46.640
20 19 431 46.353
30 28 566 46.269
40 35 671 46.241
60 46 836 46.221

90 60 1046 46.201
127 77 1301 46.172
191 106 1736 46.126
255 128 2066 46.108
383 157 2501 46.095
511 168 2666 46.094

Table 12 – Average prediction orders and complexities (96 kHz / 24-bit)

Kmax Kavg Pentium (Kavg) Size [%]

10 10 296 38.602
15 15 371 37.776
20 20 446 37.652
30 28 566 37.541
40 34 656 37.504
60 44 806 37.474
90 55 971 37.466
127 64 1106 37.462

Table 13 – Average prediction orders and complexities (192 kHz / 24-bit)

A.7 ALS Memory Usage

The following is the summary of tables used in the ALS decoder:

Coefficient tables: 3*20 = 60 Bytes
Compander table: 128 words = 512 Bytes
BGMC tables: 3*129 + 8*192 + 5*256 shorts = 6432 Bytes
Total/BGMC mode: = 7004 Bytes ~ 7 kBytes
Total/Rice codes: = 672 Bytes ~ 0.7 kBytes

A.8 ALS Decoder Algorithm Description Complexity

In the following, the description complexity in terms of C code is given:

Predictor: 48 lines
Golomb-Rice decoder: 22 lines
BGMC decoder: 73 lines

Total / Rice decoder only: 70 lines
Total Rice+BGMC decoders: 143 lines

Appendix B: Testing Sequences

The MPEG-4 Lossless Audio Coding Testing Sequences are listed in the following table.
Sequences of lower sampling rate (96 kHz, 48 kHz) and lower wordlength (16-bit) were
made available by downsampling and truncating (with proper dither) sequences of higher
sampling rates and higher length.

Group Spec. File name Source

a) 192kHz/24bit
/stereo

Avemaria.wav Avemaria / C. Gounod
Etude.wav Etude / F.Chopin

b)
96kHz/24bit/
stereo

Flute.wav Concerto for Two Flutes and Orchestra RV.533
Op.42 No.2 in C major / Vivaldi

Clarinet.wav Concerto for Clarinet and Orchestra in A major
K.622 / Mozart

Violin.wav Concerto for Violin and String Orchestra No.1,
BWV1041 / Bach

Haffner.wav Symphony No.35 in D major “Haffner”, K.385 /
Mozart

c)
192/24/stereo Cymbal192.wav

MEI original recording
96/24/stereo Cymbal96.wav

d) 192kHz/24bit
/stereo

Broadway
Dcymbals
Mfv

e)
96kHz/24bit/
stereo

Blackandtan

Broadway

Cherokee

Dcymbals

Fouronsix

Mfv

Unfo

Waltz

Note for groups a), b), c): Music source recording of New York Symphonic Ensemble.

